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Abstract

This paper deals with the three-dimensional numerical solution of composite heat transfer problems using meshless
element free Galerkin method (EFG). The EFG method utilizes moving least square (MLS) approximants to
approximate the unknown function of temperature 7(x) with 7%(x). These MLS approximants are constructed by using
a weight function, a basis function and a set of non-constants coefficients. Variational method is utilized for the dis-
cretization of the governing equations. The essential boundary conditions are enforced using Lagrange multiplier
technique. The MATLAB codes have been developed to obtain the numerical solution. The EFG results are obtained
for a model problem using different weight functions. Three new weight functions namely exponential, rational and
cosine have been proposed. A comparison is made among the results obtained using proposed (exponential, rational
and cosine) and existing (R&R, cubic spline, quartic spline, Gaussian, quadratic and hyperbolic) EFG weight functions
with finite element method (FEM) for a three-dimensional composite heat transfer model problem. The validation of
the EFG code has been achieved by comparing the EFG results with those obtained by FEM. The effect of scaling

parameter on EFG results has also been discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite element method (FEM) is well-established
numerical technique, which has been used to obtain the
numerical solution of various problems in the areas of
engineering and science. Although FEM is most general
numerical method but the discretization, meshing and re-
meshing of complex three-dimensional geometries of the
problems are very rigorous and time-consuming process
in comparison of assembly and solution of the finite
element equations. Despite its numerous advantages, it is
not well suited for certain classes of problems, such as
crack propagation and moving discontinuities, solution

*Tel.: +91-1596-245073x259; fax: +91-1596-244183.
E-mail addresses: ivsingh@bits-pilani.ac.in, iv_singh@hot-
mail.com (I.V. Singh).

of higher order partial differential equations, phase
transformation, modeling of multi-scale phenomena,
complex heat transfer problems and thermal analysis of
turbine blades etc. To avoid these problems, recently a
class of new methods has been developed, known as
meshless methods. These methods include smooth par-
ticle hydrodynamics (SPH) [1], diffuse element method
(DEM) [2], reproducing kernel particle method (RKPM)
[3], partition of unity method [4], free mesh method [5],
element free Galerkin (EFG) method [6-9], multiple scale
kernel particle methods [10], Petrov—Galerkin diffuse
element method (PG-DEM) [11], moving least square
kernel Galerkin method [12], multiple scale meshfree
methods [13], meshfree particle methods [14], local
boundary integral equation (LBIE) method [15], mesh-
less local Petrov—Galerkin (MLPG) method [16], natural
element method [17], method of finite spheres [18] and
natural neighbor Galerkin method [19]. Among all these
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Nomenclature

a;(x) non-constant coefficients
¢y, €y, ¢ distances to the nearest neighbors in x, y
and z directions

c specific heat of the material

CS cubic spline

QS quartic spline

R&R  Rao and Rahman weight function

Amax scaling parameter

0 rate of internal heat generation/volume
h convective heat transfer coefficient

k coefficient of thermal conductivity

n outward normal to the surface

n number of iterations

pi(x) monomial basis function
Iy, Iy, - normalized radii along x, y and z directions

S; surfaces of three-dimensional models
T"(x)  moving least square approximant

T, surface temperature
Ty surrounding fluid temperature
Vv three-dimensional domain (¥ U V3)

X7, Vi, z; coordinates of the /th node
w(x — x;) weight function

A Lagrangian multiplier
@;(x)  shape function
p density of the material

meshless methods, the EFG method has been success-
fully used to solve various types of problems in different
areas such as fracture mechanics [20,21], static and dy-
namic fracture [22,23], wave and crack propagation
[24,25], plates and shells [26,27], non-destructive testing
[28], electromagnetic field [29], metal forming [30], heat
transfer [31,32] and stochastic mechanics [33,34].

In this article, EFG method has been used to obtain
the numerical solution of composite heat transfer

problems. The steady state and transient analysis of the
composite problems have been carried out in three-
dimensional domain. In this method, function over the
solution domain requires only a set of nodes. It does not
require element connectivity like FEM. The integration
over the solution domain requires only simple integra-
tion cell to obtain the solution. Variational method has
been used for the discretization of the governing equa-
tions. The Lagrange multiplier method has been used to
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Fig. 1. Model for three-dimensional heat transfer in composites.
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enforce the essential boundary conditions. The MAT-
LAB codes have been developed to obtain the numerical
solution. The EFG results are obtained using proposed
and existing weight functions for a model problem and
compared with those obtained by FEM.

2. The element free Galerkin method

The discretization of the governing equations by
EFG method requires moving least square (MLS) ap-
proximants [35], which are made up of three compo-
nents: a weight function associated with each node, a
basis function and a set of non-constant coefficients.

Table 1
Data for three-dimensional heat transfer in composites

2.1. Moving least square approximations

Using MLS approximation, the unknown function
T(x) is approximated by 7"(x) over the domain [31,32]:

m

= ij(x)aj(x) =p' (x)a(x), (1)

=1
where, in 3-D,
prx)=[1 x y zI].

x'=[x y z]and P'(x) = {pi(x),p2(X), ..., pu(x)} is
a vector of complete basis functions of order m,
a(x) = {a1(x),a2(x),...,a,(x)} is a vector of unknown

Parameters Value of the parameters
Length (L)) 0.20 m
Length (L,) 0.40 m
Length (L3) 0.60 m
Depth (W) 0.30 m
Height (H;) 0.20 m
Height (H,) 0.40 m
Height (H;) 0.60 m
Thermal conductivity (k) 400 W/m°C
Thermal conductivity (k») 100 W/m°C
Specific heat of material 1 (¢;) 400 kJ/kg/K
Specific heat of material 2 (c,) 300 kJ/kg/K
Density of material 1 (p,) 10,000 kg/m?
Density of material 2 (p,) 8000 kg/m?
Rate of internal heat generation in material 1 (Q,) 0.0

Rate of internal heat generation in material 2 (Q,) 0.0

Heat transfer coefficient (%) 200 W/m?°C
Initial temperature (7iy;) 0

Time step size (At) 100 s
Surrounding fluid temperature (7,.) 20 °C
Temperature (75, and Ts,.) at surfaces Sir and S>¢ 100 °C

Convection at all other surfaces

—k% =h(T — T,), where 0’ = x,y,z

Table 2

Comparison of Ly-error norms for different EFG weight functions

Weight function L-error norms

dmzlx - 101 dmzlx - 151

96 nodes 144 nodes 96 nodes 144 nodes
R&R 1.4135 0.4554 1.6044 0.7177
CS 1.6499 0.4807 1.7724 0.7299
QS 1.7014 0.4899 1.7759 0.8393
Gaussian 1.4097 0.4551 1.7381 0.7215
Quadratic 1.7683 0.5044 4.4778 3.6569
Hyperbolic 2.2073 0.6965 3.4691 2.7505
Exponential 1.7114 0.4935 1.7011 0.5169
Rational 1.7570 0.5003 1.6770 0.6804
Cosine 1.7655 0.5041 4.2802 3.4407
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parameters that depends on x and m is the total
number of terms in the basis. The coefficients a;(x) are
obtained by minimizing the quadratic functional J(x)
given by

J(x) = Zw(x - xl){ ipj(xl)aj(x) — TI} , (2)

where w(x — Xx;) is a non-zero weight function and n is
the number of nodes in the domain of influence. The
minimization of J(x) w.r.t. a;(x) leads the following set

where A and B are given as
A=) wlx—x)p(x)p’ (%)), (5)
=1

B(x) = [w(x —x)p(x1), w(x = X2)p(X2), ..., w(X = X, )p(Xs )],

of equations: (6

Table 3

Effect of scaling parameter on EFG results obtained using 96 nodes at the location (x = 0.2, y =0 and z =0.2)
Scaling Temperature (°C)
parameter g gR CsS Qs Gaussian ~ Quadratic  Hyperbolic ~ Exponential Rational Cosine
1.01 68.7599 69.6814 69.8559 68.7470 70.0992 71.2336  69.9146 70.2198 70.0872
1.11 68.8240 69.8749 69.9921 68.8647 69.7757 71.4085 69.8989 70.2053 69.7568
1.21 68.8637 69.9938 70.0532 69.0979 71.2776 71.4398 69.9467 70.2717 70.8908
1.31 68.9760 70.0390 70.0454 69.3489 72.0136 71.4634  69.9885 70.3435 71.5779
1.41 69.0642 70.0448 70.0531 69.5790 75.1559 68.8323 70.0702 70.3739 73.6472
1.51 69.1554 70.0358 70.0201 69.8325 66.2145 69.5592  70.1085 70.3975 68.8278
1.61 69.2582 70.0101 69.9105 70.0832 64.8373 70.3148 70.1450 70.4106 64.3830
1.71 69.3478 69.9574 69.7506 70.3014 84.8320 51.9305 70.1061 69.6094 84.8667
1.81 69.4230 69.8489 69.5147 70.5115 90.4010 49.7907 70.1183 69.3933 88.7365
1.91 69.4972 69.6746 69.2008 70.6956 85.8398 47.0927 70.1250 69.1041 85.9372
2.01 69.6197 69.4572 68.9415 70.9348 200.0383 —-251.0259 70.2386 69.2368 179.9973
2.11 69.7541 69.2840 69.1168 71.1634 54.9363 -46.0624  70.3317 69.5501 68.3182
2.21 69.8994 69.2761 70.1341 71.3831 45.7752 -49.8714  70.3384 69.0438 49.4954
2.31 70.0324 69.5819 72.2938 71.6377 27.6879 —52.0982  70.3370 68.3591 23.7556
2.41 70.2208 70.4023 75.8669 72.2316 90.3990 60.2864  70.3883 71.1334 65.7887

Table 4

Effect of scaling parameter on EFG results obtained using 144 nodes at the location (x = 0.2, y =0 and z = 0.2)
Scaling Temperature (°C)
parameter g gR CS QS Gaussian  Quadratic  Hyperbolic ~ Exponential Rational Cosine
1.01 69.5283 69.7622 69.8002 69.5263 69.8810 70.4315 69.8285 69.9945 69.8725
1.11 69.5298 69.8133 69.8402 69.5272 69.2691 71.1781 69.7805 69.9000 69.4062
1.21 69.5061 69.8488 69.8601 69.5828 70.0406 71.5128 69.7957 69.9321 69.9690
1.31 69.5252 69.8477 69.8373 69.6441 70.7989 71.8830  69.8116 69.9670 70.4416
1.41 69.5310 69.8315 69.8210 69.6889 72.6063 68.1916  69.8558 69.9003 69.1976
1.51 69.5365 69.8073 69.7664 69.7414 77.2801 68.3606  69.8714 69.8784 69.2338
1.61 69.5466 69.7617 69.6445 69.7833 79.6075 68.6813 69.8846 69.8470 74.8385
1.71 69.5555 69.6827 69.4703 69.7977 89.9595 98.6489  69.8745 69.4805 93.9422
1.81 69.5636 69.5572 69.2433 69.7760 95.1976 104.0035 69.8739 69.3316 96.4449
1.91 69.5672 69.3805 68.9537 69.6921 109.7309 108.5163 69.8681 69.1498 116.5362
2.01 69.6230 69.1639 68.6529 69.6113 115.7373  -263.4159  70.0389 69.6027 -9.9285
2.11 69.7080 68.9530 68.5170 69.4219 26.8723  —85.4597  70.1149 69.8908 5.0000
2.21 69.7996 68.7924 68.6821 69.0756 -36.1904 -102.3341 70.1253 69.5818 -31.000
2.31 69.8821 68.7127 69.1719 68.5567 -95.9047 -116.5132  70.1299 69.1700 —-89.000
2.41 70.0084 68.7614 70.0248 68.0867 —181.4461 —-12.8605 70.1654 70.5231 —-25.000
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Substituting Eq. (5) in Eq. (1), the MLS approximants is

obtained as

T(x) = zi: &;(x)T; = d(x)T,

where shape function @;(x) is defined as

230 = px)(A (IBX), = p"A B,

Table 5

(®)

©)
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The derivative of the shape function is given as

®rx(x) = (p'A'B))
=plA B, +p"(A") B, +p'A'(B))

X

2.2. The weight function

(10)

X

The weight function is non-zero over a small neigh-
borhood of a node x;, called the support of node 7.
The choice of weight function w(x —x;) affects the
resulting approximation T"(x;). The smoothness of the

Effect of scaling parameter on EFG results obtained using 96 nodes at the location (x = 0.5, y =0 and z = 0.1)

Scaling Temperature (°C)
parameter  pgR CS QS Gaussian ~ Quadratic  Hyperbolic ~ Exponential Rational Cosine
1.01 65.2240 65.2701 65.2947 65.2220 65.3966 66.6384 65.3127 65.3881 65.3797
1.11 65.4560 65.1918 65.2405 65.5338 63.7792 67.1631 65.6373 65.8368 64.0212
1.21 65.5982 65.2858 65.4674 65.6081 66.3749 67.3492 65.6630 65.8743 66.1522
1.31 65.6333 65.6026 65.7462 65.6758 67.2630 67.5354 65.6843 65.9174 66.8925
1.41 65.7796 65.8024 65.9591 65.8897 66.7333 71.2317 65.4776 66.4089 65.3792
1.51 65.9391 66.0662 66.4053 66.0943 69.4435 71.5153 65.5851 66.6257 69.3822
1.61 66.0838 66.4183 66.9129 66.3601 69.4305 71.6664 65.7031 66.8425 69.6526
1.71 66.3264 66.8159 67.3803 66.8256 71.4900 130.7711 66.2410 68.8733 66.7970
1.81 66.6525 67.3083 67.9771 67.3176 90.6450 139.1832 66.4477 69.3915 80.6481
1.91 66.9694 67.8812 68.7169 67.9129 106.4591 145.6547 66.6645 69.9561 97.3552
2.01 67.4527 68.5268 69.5909 68.7957 309.6332 200.9514 67.2940 71.9022 199.4708
2.11 67.9424 69.2744 70.6811 69.7938 97.6029 127.2347 67.6313 72.5475 99.1303
2.21 68.4410 70.1919 72.2049 71.0345 115.5707 118.9625 67.9229 73.3246 104.3752
2.31 68.9379 71.3712 74.4090 72.6151 110.3517 110.2966 68.2219 74.1727 88.2042
2.41 69.4961 72.9380 77.5522 74.6972 364.0192 97.9427 68.6005 75.1589 301.0513

Table 6

Effect of scaling parameter on EFG results obtained using 144 nodes at the location (x = 0.5, y =0 and z = 0.1)
Scaling Temperature (°C)
parameter  pgR CS QS Gaussian  Quadratic Hyperbolic Exponential Rational = Cosine
1.01 65.7839 65.4975 65.4281 65.7886 65.3323  64.9817 65.4118 65.3726 65.3352
1.11 65.9692 65.3358 65.2977 66.0157 63.2457  65.9025 65.6425 65.6599 63.6647
1.21 66.0552 65.3573 65.4582 65.9827 64.9190  66.0568 65.6372 65.6537 64.9879
1.31 66.0320 65.5705 65.6501 65.9315 65.4741  66.2459 65.6339 65.6462 65.3163
1.41 66.1040 65.6928 65.7440 65.9897 64.1941  67.0919 65.4166 65.8207 62.7500
1.51 66.1780 65.8320 65.9509 66.0163 63.0606 68.0141 65.4694 65.9133 61.6468
1.61 66.2327 65.9802 66.1070 66.0686 74.7428  68.7068 65.5277 65.9951 67.2945
1.71 66.3732 66.0950 66.1346 66.2590 759779 81.2125 65.9008 67.1506 79.4287
1.81 66.5845 66.2018 66.1314 66.4340 81.7540 85.7784 66.0172 67.3286 75.7092
1.91 66.7791 66.2689 66.0590 66.6520 101.9692  90.6335 66.1367 67.4975 99.3016
2.01 67.1134 66.2588 65.8512 67.0619 103.8000 —17.6972 66.6484 68.5127 —-200.270
2.11 67.4649 66.1487 65.4883 67.5020 —-196.100  33.8821 66.8697 68.9848 —-150.00
2.21 67.8114 65.9482 65.0684 68.0334 -360.000  39.0119 67.0414 69.1034 —240.00
2.31 68.1467 65.6617 64.6482 68.7079 —-273.900  44.8138 67.2115 69.1808 —-340.00
2.41 68.5149 65.2763 64.2434 69.6594 —2403.80  —11.4020 67.4767 69.8681 —-290.00




2128

shape function is governed by the smoothness of weight
function. Therefore the selection of appropriate weight
function is essential in EFG method. The different
weight functions used in present analysis are written as a
function of normalized radius 7 as

Rao and Rahman (R&R) weight function [40]

w(x —x;) = w(r)

LV. Singh | International Journal of Heat and Mass Transfer 47 (2004) 2123-2138

The cubic spline (CS) weight function [8]

w(x —x;) = w(r)

§74r2+4r3 r<%
=q3-4+47 -3 L<r<l (11b)
0 r>1

The quartic spline (QS) weight function [8]

(14522) "D/ (14 g2y~ (0472) _ .
— () (7 r<1 ) w(x —x;) = w(r)
r>1 1—6r2+8° -3 0<r<li
= . (11¢)
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74
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Fig. 2. Effect of scaling parameter on EFG results at the location (x = 0.4, y = 0 and z = 0.3).
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Gaussian weight function [8]
w(x —x;) =w(r) = {
The quadratic weight function [36]
w(x —x;) =w(r) = {0

The hyperbolic weight function [32]

The exponential weight function

e @5 0<r<l B _ _ 1007 0<r<l
The rational weight function
1-r 0<r<l1 ey _ = 0<r<l
A T LG RN
The cosine weight function
sech(r+3) 0<r<1 oy _Jeos(Z) 0<r<li
a1 } (11£) w(x x,)—w(r)—{o 1 )
64
96 nodes

[
L]

(=23
=]

58 &

Temperature (Degree C)

56 —_— -

54|

52 L I L L
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Fig. 3. Effect of scaling parameter on EFG results at the location (x = 0.6, y = 0 and z = 0.3).
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where
lIx — x| llx — x|
(r)l - dm[ ’ (rx)l B dmx] ’
Iy — il llz =z
(ry), = i (r:), = a

dmx = dmaxcxh dmy] = dmaxcylv dmz] = dmaxczl~

dmax 18 the scaling parameter and [ is a parameter which
controls the shape of the weight function. ¢, ¢,y and c;;
at node 7, are the distances to the nearest neighbors. d,,;,
dny and d,.; are chosen such that the matrix is non-
singular everywhere in the domain.

The weight function at any given point is obtained as
(12)

w(x —X;) = w(r)w(r,)w(r,) = waw,w,,

where w(r,), w(r,) and w(r,) can be calculated by
replacing r by r,, r, and . in the expression of w(r).

Table 7
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The derivatives of the weight function are obtained as

dw, dw,
Wy = E WyWoz, w, = @WXWZ and
w, = %way. (13)

2.3. Enforcement of essential boundary conditions

Lack of Kronecker delta property in EFG shape
functions @; poses some difficulty in the imposition of
essential boundary conditions. For that different
numerical techniques have been proposed to enforce the
essential boundary conditions in EFG method such as
Lagrange multiplier technique [31,32], modified varia-
tional principle approach [7], penalty approach [37],
coupling with FEM [38], singular weight function ap-
proach [39] and transformation technique [40] etc. In the
present work, Lagrange multiplier technique is used to

Comparison of EFG results obtained using 96 nodes with FEM at the location (x = 0.4, y = 0 and z = 0.2) for dy,,x = 1.01

Time Temperature (°C)
Gx10° 4 101 FEM
R&R CS QS Gaussian  Quadratic Hyperbolic  Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 24.4552  25.3345 255048 24.4405  25.7137 26.5095 25.5403 25.7261 25.7058 37.9128
6 51.5073  52.4294 52.6056 51.4934 52.8404 53.8647 52.6560 52.9196 52.8300 55.2100
9 62.0205 62.9407 63.1156 62.0072  63.3553 64.4474 63.1709 63.4602  63.3439  63.6469
12 66.1263  67.0460 67.2204 66.1132 67.4620 68.5795 67.2777 67.5766 67.4502  67.8024
15 67.7307 68.6509 68.8253 67.7177  69.0677 70.1954 68.8834 69.1861 69.0559  69.8543
18 68.3577 69.2785 69.4529  68.3448 69.6958 70.8274 69.5113 69.8155 69.6838  70.8682
21 68.6027  69.5239  69.6983 68.5898  69.9414 71.0747 69.7569 70.0617  69.9295 71.3693
24 68.6985 69.6198 69.7943  68.6856 70.0375 71.1714 69.8530 70.1580 70.0255 71.6170
27 68.7359  69.6573 69.8318 68.7230  70.0751 71.2093 69.8905 70.1956  70.0631  71.7395
30 68.7506  69.6720 69.8465 68.7376 70.0898 71.2241 69.9052 70.2103 70.0778  71.8000
Table 8

Comparison of EFG results obtained using 96 nodes with FEM at the location (x = 0.4, y = 0 and z = 0.2) for dp.x = 1.51

Time Temperature (°C)
()x10% "1 51 FEM
R&R CS QS Gaussian Quadratic ~ Hyperbolic  Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 249723  25.8472  25.9543 25.6531 34.2501 23.5621 25.7571 26.0760 36.2574 379128
6 51.9380 52.8428 52.8721 52.6407  53.7453 51.5526 52.8619 53.1690  56.1387 55.2100
9 62.4209 63.3134 63.3141 63.1110  61.3292 62.5171 63.3696 63.6672  63.8565 63.6469
12 66.5198 67.4053 67.3956 67.2026 64.3003 66.8053 67.4734 67.7663 66.8793  67.8024
15 68.1239  69.0063 68.9928  68.8034  65.4645 68.4823 69.0779 69.3687  68.0641  69.8543
18 68.7517 69.6329 69.6180  69.4298  65.9206 69.1381 69.7054 69.9952  68.5284  70.8682
21 68.9974 69.8781 69.8627  69.6749  66.0993 69.3946 69.9508 70.2402  68.7105 71.3693
24 69.0936 69.9741  69.9585 69.7708 66.1694 69.4948 70.0468 70.3360 68.7818  71.6170
27 69.1312  70.0116 69.9960  69.8084  66.1968 69.5340 70.0844 70.3734  68.8098  71.7395
30 69.1460 70.0263  70.0107 69.8231 66.2075 69.5494 70.0990 70.3881 68.8208  71.8000
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enforce the essential boundary conditions due to its
simplicity and accuracy.
In 3-D, Lagrange multiplier Z is expressed as

A(X) = Ni(a)d;, X €S, (14a)

8A(X) = Ny(a)di;, X €S, (14b)

where N;(a) is a Lagrange interpolant and a is the area
for the essential boundary conditions.

3. Implementation of the EFG method

A general form of energy equation for three-dimen-
sional heat transfer in isotropic materials with thermal
properties independent of temperature is given as

*Tr T T . .
(@'ﬁ‘a—yzﬁ‘@)-ﬁ-Q:pCT. (1521)

The initial conditions are given as at time ¢t = 0

T=Ty, onV. (15b)
The essential boundary conditions are given as

at the front surface of material 1 (Sig), y = W,
T = Tig; (15¢)

at the front surface of material 2 (Syr), y = W,

T = ToF. (15d)
The natural boundary conditions are given as
at the back surface of material 1 and 2 (S;ps and

S2ms)s
or

—k@n},:h(T—Too); (15e)

Table 9

Comparison of temperature value obtained using 144 nodes with FEM at the location (x = 0.4, y = 0 and z = 0.2) for dy,, = 1.01
Time Temperature (°C)

2
(©)x10° =101 FEM
R&R CS QS Gaussian  Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 27.7469 27.7777 27.7756 27.7462  27.7800 27.7289 27.7804 27.7987  27.7775  31.0311
6 50.9534 51.1260 51.1522  50.9515  51.2070 51.5229 51.1714 51.2790  51.2011 52.1403
9 61.3727 61.5773 61.6096 61.3708  61.6785 62.1247 61.6339 61.7744  61.6712  61.9275
12 65.9488 66.1682 66.2034 65.9469  66.2786 66.7820 66.2298 66.3846  66.2705  66.5053
15 67.9572  68.1840 68.2206 67.9553  68.2988 68.8280 68.2481 68.4091 68.2905  68.6377
18 68.8387 69.0692 69.1065 68.8368  69.1861 69.7269 69.1344 69.2982  69.1777  69.6303
21 69.2257  69.4579  69.4956 69.2237  69.5758 70.1219 69.5237 69.6887  69.5673  70.0923
24 69.3955 69.6286 69.6664 69.3935  69.7470 70.2954 69.6947 69.8602  69.7385  70.3073
27 69.4700 69.7035 69.7415 69.4680  69.8222 70.3717 69.7697 69.9355  69.8136  70.4074
30 69.5027 69.7365 69.7744  69.5008  69.8552 70.4052 69.8027 69.9686  69.8467  70.4539

Table 10

Comparison of temperature value obtained using 144 nodes with FEM at the location (x = 0.4, y = 0 and z = 0.2) for dpn,x = 1.51
Time Temperature (°C)
©x10° 5 51 FEM

R&R CS QS Gaussian Quadratic  Hyperbolic Exponential Rational Cosine

0 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 28.9342 28.5827 28.7961 28.6839  36.4238 8.6876 27.6985 27.2910  34.0727  31.0311
6 50.8937 51.1169 51.0966 51.0776  59.7803 42.9939 51.2045 51.1816  53.7799  52.1403
9 61.1118 61.4391 61.3686 61.3700  69.6179 57.4475 61.6850 61.7254  62.4151 61.9275
12 65.7326  66.0621 65.9906 65.9884  73.9208 63.6642 66.2814 66.3225  66.2236  66.5053
15 67.8190 68.1311 68.0687 68.0588  75.8071 66.3394 68.2970 68.3274  67.9048  68.6377
18 68.7610  69.0571  69.0030 68.9871 76.6342 67.4907 69.1809 69.2019  68.6470  69.6303
21 69.1863  69.4715 69.4231 69.4032  76.9969 67.9862 69.5686 69.5833  68.9747  70.0923
24 69.3784  69.6570  69.6120 69.5898  77.1559 68.1995 69.7386 69.7497  69.1194  70.3073
27 69.4651 69.7400 69.6970 69.6734  77.2257 68.2912 69.8131 69.8223  69.1833  70.4074
30 69.5042  69.7772  69.7352  69.7109  77.2563 68.3307 69.8458 69.8540  69.2115  70.4539
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at the inner and outer surfaces of materials 1 and 2,

or
—k—l’l,,/ =h

™ (T — T).

(15f)

The compatibility requirements at the interface of two
materials are given as

(LA

on’
where n,, is the cosine of angle between n and »’, n is the
outward normal to the surface and n’ = x,z.

or

mat2
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The weighted integral form of Eq. (15a) is obtained
as

Joli

The weak form of Eq. (16) will be

T n T . T
0?0z

Ox?

> +prcT}dV:0. (16)

/[k(VTw)VT—wQ-i-wch}dV
_/Wk(ar
s

—

Ox

ar
dy

or

gn_,>ds:o. (17)

n, +
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Fig. 4. Comparison of EFG results obtained using 96 nodes with FEM at the location (x = 0.6, y = 0 and z = 0.2).
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Introducing natural boundary conditions in weak form, and
Eq. (17) reduces to Si=Su, $=Su, S=Sw Si=Su
2
Z /[ki(VTw)VT . WQi +WpiCiT]dV Ss = Sis, S¢ =S, S7=351r, Ss=5%r,
=t Vi So = Sips,  Si0 = Saps-
4 ZO / Wwh(T — T..)dS = 0, (18) The functional /(7)) can be written as
—1 JS;

2 1 . .
(r=>% / {Ek,-(VTT)VT - TO; + pl-c,-TT}dV
where i=1

10 2 10
o 9 2 hT

via|—- — = + / ds — /hTTOGdS. 19
{6x oy az} 12:1: s 2 12:1: 5 )

70
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Fig. 5. Comparison of EFG results obtained using 144 nodes with FEM at the location (x = 0.6, y = 0 and z = 0.2).
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Using Egs. (15¢) and (15d) to enforce essential boundary
conditions, the functional /*(T) is obtained as

2

rr =%

i=1

/ Bki(vTr)vr —TO + pl.c,.T'T} dv
V;
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Using variational method, Eq. (20) reduces to

2
3 (T) = /[k,-(VTT)8VT — 08T + p,e; T8T|dV
i=1 JV

10 10
+Z/hT6TdS—Z/hTm6TdS
j=1 J5; =1 Y5

10 2 10
hT
+ E /TdeE h1T, dS 2
=1 JS; =1 VS + E [AOT + 8A(T — Ty, )] dS. (21)
i=1 JSF
2 . . . .
+ E / MT — Ts,.)dS. (20) Since 67 and 3/ are arbitrary in preceding Eq. (21), the
i . . : .
= JsE following equations are obtained using Eqs. (8) and (21):
70
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Fig. 6. Comparison of EFG results obtained using 96 nodes with FEM at the location (x = 0.6, y = 0 and z = 0.3).
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[KJ{T} + [CI{T} + [G]{4} = {f}, (22a)
[GTH{T} = {q}, (22b)
2 (pl‘x T k,' O 0 d)l,x
K[J = Z / ¢l,y O kj 0 ley dV
i=1 Vi @1_2 0 0 k,' @172
10
+y / hoT @, dS, (23a)
Jj=1 S;
2
CIJ = Z / pici(p}“(pj dI/7 (23b)
[

5 10
ﬁ22/Qi¢,dV+Z/ShTm¢zdS7 (23¢)
i=1 JVi J=1 J

G[K = / (I)INK dS + / (I)INK dS, (23d)
SiF SF

qk = / TS]pNKdS+/ TSZFNKdS' (236)
Sip SE

Using backward difference technique for time approxi-
mation, Eq. (22) can be written as

{K*+C EG]{T,—I} {Rﬁ}
T - 3 = (24)
G’ 0 | q

where
R, = ([C] - (1 — )AK){T},_, +2A{f),

+ (1 — 0)At{t}, ,, (24a)
K" = aAt[K]. (24b)

4. Numerical results and discussion

The different parameters used for three-dimensional
steady-state and transient analysis of the composite heat
transfer model shown in Fig. 1 are tabulated in Table 1.
The EFG results are obtained using different weight
functions for two sets of nodes. The FEM results are
obtained using ANSYS package and 8-noded brick
element (SOLID 70) for the same sets of nodes. A
comparative study is carried out to evaluate the per-
formance of different EFG weight functions.

4.1. Steady-state analysis

The steady-state EFG results have been obtained
using different weight functions for a composite three-
dimensional model problem. L,-error norms of temper-
ature values have been calculated for different EFG
weight functions using two sets of nodes. Table 2 shows
the L,-error norms obtained using two values of scaling
parameter (i.e. dp, = 1.01 and 1.51) for 96 and 144

nodes. From the results presented in Table 2, it has been
observed that the results obtained using different EFG
weight function are almost identical for dp,, = 1.01 but
for du.x = 1.51, only R&R, CS, QS, Gaussian, expo-
nential and rational weight functions give acceptable
results. It has also been noticed that the EFG results
start converging with the increase in number of nodes.

The effect of scaling parameter (dy.x) on EFG results
obtained using different weight functions is presented in
Table 3 for 96 nodes at the location (x = 0.2, y = 0 and
z=0.2) and in Table 4 for 144 nodes at the same loca-
tion (x =0.2, y=0 and z = 0.2). The similar effect of
scaling parameter on EFG results has also been shown
in Table 5 for 96 nodes at the location (x =0.5, y =0
and z=0.1) and in Table 6 for 144 nodes the same
location (x =0.5, y =0 and z = 0.1). Fig. 2 shows the
effect of scaling parameter on EFG results obtained
using 96 and 144 nodes at the location (x =04, y =10
and z = 0.3). The similar effect of scaling parameter on
EFG results is observed in Fig. 3 at the location (x = 0.6,
y =0 and z = 0.3). From tables and figures, it is clear
that only R&R, CS, QS, Gaussian, exponential and ra-
tional weight functions gives acceptable results in the
range 1.0 < dyax < 1.5 whereas the results obtained
using quadratic, hyperbolic and cosine weight functions
are varying in abrupt manner with scaling parameter
(dmax)- Therefore EFG results obtained using quadratic,
hyperbolic and cosine weight functions are not reliable
in the range 1.0 < dy.x < 1.5. Tt is also observed that
there is minimum variation in the EFG results with the
increase in the value of scaling parameter (dp.) for
exponential weight function.

4.2. Transient analysis

The transient analysis of three-dimensional compos-
ite model is also carried out using different EFG weight
functions. The EFG results have been obtained at few
typical locations for two sets of nodes using two values
of scaling parameter. Table 7 shows a comparison of
temperature values obtained using 96 nodes with FEM
results at the location (x = 0.4, y=0 and z=0.2) for
dpax = 1.01. A comparison of temperature values ob-
tained using 96 nodes with FEM results is also presented
in Table § at the same location (x =0.4, y=0 and
z=0.2) for dp. = 1.51. Tables 9 and 10 show the sim-
ilar comparisons of temperature values obtained using
144 nodes for dy.,x = 1.01 and 1.51, respectively at the
location (x = 0.4, y =0 and z = 0.2). Fig. 4 shows the
comparison of temperature values obtained using 96
nodes with FEM results for dp,c = 1.01 and 1.51 at the
location (x = 0.6, y =0 and z = 0.2). The similar com-
parison of temperature values obtained using 144 nodes
with FEM results is shown in Fig. 5 at the same location
(x=0.6, y=0 and z =0.2). Fig. 6 shows the compari-
son of temperature values obtained using 96 nodes with
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FEM results for dy. = 1.01 and 1.51 at another loca-
tion (x =0.6, y =0 and z = 0.3). The similar compari-
son of temperature values obtained using 144 nodes with
FEM results is shown in Fig. 7 at the same location
(x =0.6, y =0 and z = 0.3). From the results presented
in tables and figures, it is clear that the EFG results
obtained using different weight functions are almost
identical for dp,; = 1.01 but for dy.x = 1.51 only R&R,
CS, QS, Gaussian, exponential and rational weight
functions give acceptable results. It has also been ob-
served that the results obtained by EFG method are in
good agreement with those obtained by FEM and

70

moreover with the increase in number of nodes EFG
results starts converging.

5. Conclusions

In the present analysis, the EFG method has been
successfully used to obtain the numerical solution of
three-dimensional composite heat transfer problems.
The MATLAB codes have been developed to obtain the
numerical solution for a model problem. The results
obtained using different EFG weight functions are
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Fig. 7. Comparison of EFG results obtained using 144 nodes with FEM at the location (x = 0.6, y = 0 and z = 0.3).
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compared with those obtained by FEM to evaluate the
performance of the weight functions. It has been found
that the EFG results obtained using proposed (expo-
nential, rational and cosine) and existing (R&R, CS, QS,
Gaussian, quadratic and hyperbolic) weight functions
are in good agreement with those obtained by FEM.
From this analysis, it is clear that only R&R, CS, QS,
Gaussian, exponential and rational weight functions
give acceptable results in the range 1.0 < dp.x < 1.5. The
results obtained using exponential weight function are
more reliable as compared to other used weight func-
tions because only exponential weight function has
minimum variation in the results with the change in the
value of scaling parameter. This work can be extended
further for complex three-dimensional problems.
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