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Abstract

This paper deals with the three-dimensional numerical solution of composite heat transfer problems using meshless

element free Galerkin method (EFG). The EFG method utilizes moving least square (MLS) approximants to

approximate the unknown function of temperature T ðxÞ with T hðxÞ. These MLS approximants are constructed by using

a weight function, a basis function and a set of non-constants coefficients. Variational method is utilized for the dis-

cretization of the governing equations. The essential boundary conditions are enforced using Lagrange multiplier

technique. The MATLAB codes have been developed to obtain the numerical solution. The EFG results are obtained

for a model problem using different weight functions. Three new weight functions namely exponential, rational and

cosine have been proposed. A comparison is made among the results obtained using proposed (exponential, rational

and cosine) and existing (R&R, cubic spline, quartic spline, Gaussian, quadratic and hyperbolic) EFG weight functions

with finite element method (FEM) for a three-dimensional composite heat transfer model problem. The validation of

the EFG code has been achieved by comparing the EFG results with those obtained by FEM. The effect of scaling

parameter on EFG results has also been discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite element method (FEM) is well-established

numerical technique, which has been used to obtain the

numerical solution of various problems in the areas of

engineering and science. Although FEM is most general

numerical method but the discretization, meshing and re-

meshing of complex three-dimensional geometries of the

problems are very rigorous and time-consuming process

in comparison of assembly and solution of the finite

element equations. Despite its numerous advantages, it is

not well suited for certain classes of problems, such as

crack propagation and moving discontinuities, solution
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of higher order partial differential equations, phase

transformation, modeling of multi-scale phenomena,

complex heat transfer problems and thermal analysis of

turbine blades etc. To avoid these problems, recently a

class of new methods has been developed, known as

meshless methods. These methods include smooth par-

ticle hydrodynamics (SPH) [1], diffuse element method

(DEM) [2], reproducing kernel particle method (RKPM)

[3], partition of unity method [4], free mesh method [5],

element free Galerkin (EFG) method [6–9], multiple scale

kernel particle methods [10], Petrov–Galerkin diffuse

element method (PG-DEM) [11], moving least square

kernel Galerkin method [12], multiple scale meshfree

methods [13], meshfree particle methods [14], local

boundary integral equation (LBIE) method [15], mesh-

less local Petrov–Galerkin (MLPG) method [16], natural

element method [17], method of finite spheres [18] and

natural neighbor Galerkin method [19]. Among all these
ed.
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Nomenclature

ajðxÞ non-constant coefficients

cxI , cyI , czI distances to the nearest neighbors in x, y
and z directions

c specific heat of the material

CS cubic spline

QS quartic spline

R&R Rao and Rahman weight function

dmax scaling parameter
_Q rate of internal heat generation/volume

h convective heat transfer coefficient

k coefficient of thermal conductivity

n outward normal to the surface

�n number of iterations

pjðxÞ monomial basis function

rx, ry , rz normalized radii along x, y and z directions
Si surfaces of three-dimensional models

T hðxÞ moving least square approximant

TSi surface temperature

T1 surrounding fluid temperature

V three-dimensional domain (V1 [ V2)
xI , yI , zI coordinates of the Ith node

wðx� xIÞ weight function

k Lagrangian multiplier

UIðxÞ shape function

q density of the material
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meshless methods, the EFG method has been success-

fully used to solve various types of problems in different

areas such as fracture mechanics [20,21], static and dy-

namic fracture [22,23], wave and crack propagation

[24,25], plates and shells [26,27], non-destructive testing

[28], electromagnetic field [29], metal forming [30], heat

transfer [31,32] and stochastic mechanics [33,34].

In this article, EFG method has been used to obtain

the numerical solution of composite heat transfer
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Fig. 1. Model for three-dimensiona
problems. The steady state and transient analysis of the

composite problems have been carried out in three-

dimensional domain. In this method, function over the

solution domain requires only a set of nodes. It does not

require element connectivity like FEM. The integration

over the solution domain requires only simple integra-

tion cell to obtain the solution. Variational method has

been used for the discretization of the governing equa-

tions. The Lagrange multiplier method has been used to
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enforce the essential boundary conditions. The MAT-

LAB codes have been developed to obtain the numerical

solution. The EFG results are obtained using proposed

and existing weight functions for a model problem and

compared with those obtained by FEM.
2. The element free Galerkin method

The discretization of the governing equations by

EFG method requires moving least square (MLS) ap-

proximants [35], which are made up of three compo-

nents: a weight function associated with each node, a

basis function and a set of non-constant coefficients.
Table 1

Data for three-dimensional heat transfer in composites

Parameters

Length (L1)

Length (L2)

Length (L3)

Depth (W )

Height (H1)

Height (H2)

Height (H3)

Thermal conductivity (k1)
Thermal conductivity (k2)
Specific heat of material 1 (c1)
Specific heat of material 2 (c2)
Density of material 1 (q1)

Density of material 2 (q2)

Rate of internal heat generation in material 1 ( _Q1)

Rate of internal heat generation in material 2 ( _Q2)

Heat transfer coefficient (h)
Initial temperature (Tini)
Time step size (Dt)
Surrounding fluid temperature (T1)
Temperature (TS1F and TS2F ) at surfaces S1F and S2F
Convection at all other surfaces

Table 2

Comparison of L2-error norms for different EFG weight functions

Weight function L2-error norms

dmax ¼ 1:01

96 nodes 144 nodes

R&R 1.4135 0.4554

CS 1.6499 0.4807

QS 1.7014 0.4899

Gaussian 1.4097 0.4551

Quadratic 1.7683 0.5044

Hyperbolic 2.2073 0.6965

Exponential 1.7114 0.4935

Rational 1.7570 0.5003

Cosine 1.7655 0.5041
2.1. Moving least square approximations

Using MLS approximation, the unknown function

T ðxÞ is approximated by T hðxÞ over the domain [31,32]:

T hðxÞ ¼
Xm
j¼1

pjðxÞajðxÞ � pTðxÞaðxÞ; ð1Þ

where, in 3-D,

pTðxÞ ¼ 1 x y z½ �:

xT ¼ x y z½ � and PTðxÞ ¼ fp1ðxÞ; p2ðxÞ; . . . ; pmðxÞg is

a vector of complete basis functions of order m,
aðxÞ ¼ fa1ðxÞ; a2ðxÞ; . . . ; amðxÞg is a vector of unknown
Value of the parameters

0.20 m

0.40 m

0.60 m

0.30 m

0.20 m

0.40 m

0.60 m

400 W/m �C
100 W/m �C
400 kJ/kg/K

300 kJ/kg/K

10,000 kg/m3

8000 kg/m3

0.0

0.0

200 W/m2 �C
0

100 s

20 �C
100 �C
�k oT

on0 ¼ hðT � T1Þ, where n0 ¼ x; y; z

dmax ¼ 1:51

96 nodes 144 nodes

1.6044 0.7177

1.7724 0.7299

1.7759 0.8393

1.7381 0.7215

4.4778 3.6569

3.4691 2.7505

1.7011 0.5169

1.6770 0.6804

4.2802 3.4407
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parameters that depends on x and m is the total

number of terms in the basis. The coefficients ajðxÞ are
obtained by minimizing the quadratic functional JðxÞ
given by

JðxÞ ¼
Xn

I¼1

wðx� xIÞ
Xm
j¼1

pjðxIÞajðxÞ
(

� TI

)2

; ð2Þ

where wðx� xIÞ is a non-zero weight function and n is

the number of nodes in the domain of influence. The

minimization of JðxÞ w.r.t. ajðxÞ leads the following set

of equations:
Table 3

Effect of scaling parameter on EFG results obtained using 96 nodes a

Scaling

parameter

Temperature (�C)

R&R CS QS Gaussian Qu

1.01 68.7599 69.6814 69.8559 68.7470 7

1.11 68.8240 69.8749 69.9921 68.8647 6

1.21 68.8637 69.9938 70.0532 69.0979 7

1.31 68.9760 70.0390 70.0454 69.3489 7

1.41 69.0642 70.0448 70.0531 69.5790 7

1.51 69.1554 70.0358 70.0201 69.8325 6

1.61 69.2582 70.0101 69.9105 70.0832 6

1.71 69.3478 69.9574 69.7506 70.3014 8

1.81 69.4230 69.8489 69.5147 70.5115 9

1.91 69.4972 69.6746 69.2008 70.6956 8

2.01 69.6197 69.4572 68.9415 70.9348 20

2.11 69.7541 69.2840 69.1168 71.1634 5

2.21 69.8994 69.2761 70.1341 71.3831 4

2.31 70.0324 69.5819 72.2938 71.6377 2

2.41 70.2208 70.4023 75.8669 72.2316 9

Table 4

Effect of scaling parameter on EFG results obtained using 144 nodes

Scaling

parameter

Temperature (�C)

R&R CS QS Gaussian Q

1.01 69.5283 69.7622 69.8002 69.5263

1.11 69.5298 69.8133 69.8402 69.5272

1.21 69.5061 69.8488 69.8601 69.5828

1.31 69.5252 69.8477 69.8373 69.6441

1.41 69.5310 69.8315 69.8210 69.6889

1.51 69.5365 69.8073 69.7664 69.7414

1.61 69.5466 69.7617 69.6445 69.7833

1.71 69.5555 69.6827 69.4703 69.7977

1.81 69.5636 69.5572 69.2433 69.7760

1.91 69.5672 69.3805 68.9537 69.6921 1

2.01 69.6230 69.1639 68.6529 69.6113 1

2.11 69.7080 68.9530 68.5170 69.4219

2.21 69.7996 68.7924 68.6821 69.0756 )
2.31 69.8821 68.7127 69.1719 68.5567 )
2.41 70.0084 68.7614 70.0248 68.0867 )1
AðxÞaðxÞ ¼ BðxÞT: ð3Þ

The above equation can be written as

aðxÞ ¼ A�1ðxÞBðxÞT; ð4Þ

where A and B are given as

A ¼
Xn

I¼1

wðx� xIÞpðxIÞpTðxIÞ; ð5Þ

BðxÞ¼ ½wðx�x1Þpðx1Þ;wðx�x2Þpðx2Þ; . . . ;wðx�xnÞpðxnÞ�;
ð6Þ
t the location (x ¼ 0:2, y ¼ 0 and z ¼ 0:2)

adratic Hyperbolic Exponential Rational Cosine

0.0992 71.2336 69.9146 70.2198 70.0872

9.7757 71.4085 69.8989 70.2053 69.7568

1.2776 71.4398 69.9467 70.2717 70.8908

2.0136 71.4634 69.9885 70.3435 71.5779

5.1559 68.8323 70.0702 70.3739 73.6472

6.2145 69.5592 70.1085 70.3975 68.8278

4.8373 70.3148 70.1450 70.4106 64.3830

4.8320 51.9305 70.1061 69.6094 84.8667

0.4010 49.7907 70.1183 69.3933 88.7365

5.8398 47.0927 70.1250 69.1041 85.9372

0.0383 )251.0259 70.2386 69.2368 179.9973

4.9363 )46.0624 70.3317 69.5501 68.3182

5.7752 )49.8714 70.3384 69.0438 49.4954

7.6879 )52.0982 70.3370 68.3591 23.7556

0.3990 60.2864 70.3883 71.1334 65.7887

at the location (x ¼ 0:2, y ¼ 0 and z ¼ 0:2)

uadratic Hyperbolic Exponential Rational Cosine

69.8810 70.4315 69.8285 69.9945 69.8725

69.2691 71.1781 69.7805 69.9000 69.4062

70.0406 71.5128 69.7957 69.9321 69.9690

70.7989 71.8830 69.8116 69.9670 70.4416

72.6063 68.1916 69.8558 69.9003 69.1976

77.2801 68.3606 69.8714 69.8784 69.2338

79.6075 68.6813 69.8846 69.8470 74.8385

89.9595 98.6489 69.8745 69.4805 93.9422

95.1976 104.0035 69.8739 69.3316 96.4449

09.7309 108.5163 69.8681 69.1498 116.5362

15.7373 )263.4159 70.0389 69.6027 )9.9285
26.8723 )85.4597 70.1149 69.8908 5.0000

36.1904 )102.3341 70.1253 69.5818 )31.000
95.9047 )116.5132 70.1299 69.1700 )89.000
81.4461 )12.8605 70.1654 70.5231 )25.000
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TT ¼ ½T1; T2; . . . ; Tn�: ð7Þ

Substituting Eq. (5) in Eq. (1), the MLS approximants is

obtained as

T hðxÞ ¼
Xn

I¼1

UIðxÞTI ¼ UðxÞT; ð8Þ

where shape function UIðxÞ is defined as

UIðxÞ ¼
Xm
j¼0

pjðxÞðA�1ðxÞBðxÞÞjI ¼ pTA�1BI : ð9Þ
Table 5

Effect of scaling parameter on EFG results obtained using 96 nodes

Scaling

parameter

Temperature (�C)

R&R CS QS Gaussian Qu

1.01 65.2240 65.2701 65.2947 65.2220 6

1.11 65.4560 65.1918 65.2405 65.5338 6

1.21 65.5982 65.2858 65.4674 65.6081 6

1.31 65.6333 65.6026 65.7462 65.6758 6

1.41 65.7796 65.8024 65.9591 65.8897 6

1.51 65.9391 66.0662 66.4053 66.0943 6

1.61 66.0838 66.4183 66.9129 66.3601 6

1.71 66.3264 66.8159 67.3803 66.8256 7

1.81 66.6525 67.3083 67.9771 67.3176 9

1.91 66.9694 67.8812 68.7169 67.9129 10

2.01 67.4527 68.5268 69.5909 68.7957 30

2.11 67.9424 69.2744 70.6811 69.7938 9

2.21 68.4410 70.1919 72.2049 71.0345 11

2.31 68.9379 71.3712 74.4090 72.6151 11

2.41 69.4961 72.9380 77.5522 74.6972 36

Table 6

Effect of scaling parameter on EFG results obtained using 144 nodes

Scaling

parameter

Temperature (�C)

R&R CS QS Gaussian Quad

1.01 65.7839 65.4975 65.4281 65.7886 6

1.11 65.9692 65.3358 65.2977 66.0157 6

1.21 66.0552 65.3573 65.4582 65.9827 6

1.31 66.0320 65.5705 65.6501 65.9315 6

1.41 66.1040 65.6928 65.7440 65.9897 6

1.51 66.1780 65.8320 65.9509 66.0163 6

1.61 66.2327 65.9802 66.1070 66.0686 7

1.71 66.3732 66.0950 66.1346 66.2590 7

1.81 66.5845 66.2018 66.1314 66.4340 8

1.91 66.7791 66.2689 66.0590 66.6520 10

2.01 67.1134 66.2588 65.8512 67.0619 10

2.11 67.4649 66.1487 65.4883 67.5020 )19
2.21 67.8114 65.9482 65.0684 68.0334 )36
2.31 68.1467 65.6617 64.6482 68.7079 )27
2.41 68.5149 65.2763 64.2434 69.6594 )240
The derivative of the shape function is given as

UI ;xðxÞ ¼ ðpTA�1BIÞ;x
¼ pT;xA

�1BI þ pTðA�1Þ;xBI þ pTA�1ðBIÞ;x: ð10Þ
2.2. The weight function

The weight function is non-zero over a small neigh-

borhood of a node xI , called the support of node I.
The choice of weight function wðx� xIÞ affects the

resulting approximation T hðxIÞ. The smoothness of the
at the location (x ¼ 0:5, y ¼ 0 and z ¼ 0:1)

adratic Hyperbolic Exponential Rational Cosine

5.3966 66.6384 65.3127 65.3881 65.3797

3.7792 67.1631 65.6373 65.8368 64.0212

6.3749 67.3492 65.6630 65.8743 66.1522

7.2630 67.5354 65.6843 65.9174 66.8925

6.7333 71.2317 65.4776 66.4089 65.3792

9.4435 71.5153 65.5851 66.6257 69.3822

9.4305 71.6664 65.7031 66.8425 69.6526

1.4900 130.7711 66.2410 68.8733 66.7970

0.6450 139.1832 66.4477 69.3915 80.6481

6.4591 145.6547 66.6645 69.9561 97.3552

9.6332 200.9514 67.2940 71.9022 199.4708

7.6029 127.2347 67.6313 72.5475 99.1303

5.5707 118.9625 67.9229 73.3246 104.3752

0.3517 110.2966 68.2219 74.1727 88.2042

4.0192 97.9427 68.6005 75.1589 301.0513

at the location (x ¼ 0:5, y ¼ 0 and z ¼ 0:1)

ratic Hyperbolic Exponential Rational Cosine

5.3323 64.9817 65.4118 65.3726 65.3352

3.2457 65.9025 65.6425 65.6599 63.6647

4.9190 66.0568 65.6372 65.6537 64.9879

5.4741 66.2459 65.6339 65.6462 65.3163

4.1941 67.0919 65.4166 65.8207 62.7500

3.0606 68.0141 65.4694 65.9133 61.6468

4.7428 68.7068 65.5277 65.9951 67.2945

5.9779 81.2125 65.9008 67.1506 79.4287

1.7540 85.7784 66.0172 67.3286 75.7092

1.9692 90.6335 66.1367 67.4975 99.3016

3.8000 )17.6972 66.6484 68.5127 )200.270
6.100 33.8821 66.8697 68.9848 )150.00
0.000 39.0119 67.0414 69.1034 )240.00
3.900 44.8138 67.2115 69.1808 )340.00
3.80 )11.4020 67.4767 69.8681 )290.00
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shape function is governed by the smoothness of weight

function. Therefore the selection of appropriate weight

function is essential in EFG method. The different

weight functions used in present analysis are written as a

function of normalized radius r as

Rao and Rahman (R&R) weight function [40]

wðx� xIÞ ¼ wðrÞ

¼
ð1þb2r2Þ�ðð1þbÞ=2Þ�ð1þb2Þ�ðð1þbÞ=2Þ

1�ð1þb2Þ�ðð1þbÞ=2Þ r6 1

0 r > 1

( )
:

ð11aÞ
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Fig. 2. Effect of scaling parameter on EFG results
The cubic spline (CS) weight function [8]

wðx� xIÞ ¼ wðrÞ

¼
2
3
� 4r2 þ 4r3 r6 1

2
4
3
� 4r þ 4r2 � 4

3
r3 1

2
< r6 1

0 r > 1

8<
:

9=
;: ð11bÞ

The quartic spline (QS) weight function [8]

wðx� xIÞ ¼ wðrÞ

¼ 1� 6r2 þ 8r3 � 3r4 06 r6 1

0 r > 1

� �
: ð11cÞ
2

2

R&R
C.S.
Q.S
Gaussian
Quadratic
Hyperboilc
Exponential
Rational
Cosine

R&R
C.S.

Cosine
Rational
Exponential
Hyperboilc
Quadratic
Gaussian
Q.S

1.91.81.71.6

arameter

arameter

1.6 1.7 1.8 1.9

at the location (x ¼ 0:4, y ¼ 0 and z ¼ 0:3).
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Gaussian weight function [8]

wðx� xIÞ ¼ wðrÞ ¼ e�ð2:5rÞ2 06 r6 1

0 r > 1

� �
: ð11dÞ

The quadratic weight function [36]

wðx� xIÞ ¼ wðrÞ ¼ 1� r2 06 r6 1

0 r > 1

� �
: ð11eÞ

The hyperbolic weight function [32]

wðx� xIÞ ¼ wðrÞ ¼ sechðr þ 3Þ 06 r6 1
0 r > 1

� �
: ð11fÞ
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Fig. 3. Effect of scaling parameter on EFG results
The exponential weight function

wðx� xIÞ ¼ wðrÞ ¼ 100�r 06 r6 1

0 r > 1

� �
: ð11gÞ

The rational weight function

wðx� xIÞ ¼ wðrÞ ¼
1

r2þ0:1
06 r6 1

0 r > 1

� �
: ð11hÞ

The cosine weight function

wðx� xIÞ ¼ wðrÞ ¼ cos pr
2

� �
06 r6 1

0 r > 1

� �
; ð11iÞ
.5 1.6 1.7 1.8 1.9 2

 
 
 

  
 

   
 

.5 1.6 1.7 1.8 1.9 2
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Q.S        
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Cosine     
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where

ðrÞI ¼
kx� xIk

dmI
; ðrxÞI ¼

kx� xIk
dmxI

;

ðryÞI ¼
ky � yIk
dmyI

; ðrzÞI ¼
kz� zIk
dmzI

:

dmxI ¼ dmaxcxI ; dmyI ¼ dmaxcyI ; dmzI ¼ dmaxczI :

dmax is the scaling parameter and b is a parameter which

controls the shape of the weight function. cxI , cyI and czI
at node I , are the distances to the nearest neighbors. dmxI ,
dmyI and dmzI are chosen such that the matrix is non-

singular everywhere in the domain.

The weight function at any given point is obtained as

wðx� xIÞ ¼ wðrxÞwðryÞwðrzÞ ¼ wxwywz; ð12Þ

where wðrxÞ, wðryÞ and wðrzÞ can be calculated by

replacing r by rx, ry and rz in the expression of wðrÞ.
Table 7

Comparison of EFG results obtained using 96 nodes with FEM at th

Time

(s)· 102
Temperature (�C)

dmax ¼ 1:01

R&R CS QS Gaussian Quadratic

0 0.0000 0.0000 0.0000 0.0000 0.0000

3 24.4552 25.3345 25.5048 24.4405 25.7137

6 51.5073 52.4294 52.6056 51.4934 52.8404

9 62.0205 62.9407 63.1156 62.0072 63.3553

12 66.1263 67.0460 67.2204 66.1132 67.4620

15 67.7307 68.6509 68.8253 67.7177 69.0677

18 68.3577 69.2785 69.4529 68.3448 69.6958

21 68.6027 69.5239 69.6983 68.5898 69.9414

24 68.6985 69.6198 69.7943 68.6856 70.0375

27 68.7359 69.6573 69.8318 68.7230 70.0751

30 68.7506 69.6720 69.8465 68.7376 70.0898

Table 8

Comparison of EFG results obtained using 96 nodes with FEM at th

Time

(s)· 102
Temperature (�C)

dmax ¼ 1:51

R&R CS QS Gaussian Quadratic

0 0.0000 0.0000 0.0000 0.0000 0.0000

3 24.9723 25.8472 25.9543 25.6531 34.2501

6 51.9380 52.8428 52.8721 52.6407 53.7453

9 62.4209 63.3134 63.3141 63.1110 61.3292

12 66.5198 67.4053 67.3956 67.2026 64.3003

15 68.1239 69.0063 68.9928 68.8034 65.4645

18 68.7517 69.6329 69.6180 69.4298 65.9206

21 68.9974 69.8781 69.8627 69.6749 66.0993

24 69.0936 69.9741 69.9585 69.7708 66.1694

27 69.1312 70.0116 69.9960 69.8084 66.1968

30 69.1460 70.0263 70.0107 69.8231 66.2075
The derivatives of the weight function are obtained as

w;x ¼
dwx

dx
wywz; w;y ¼

dwy

dy
wxwz and

w;z ¼
dwz

dz
wxwy : ð13Þ
2.3. Enforcement of essential boundary conditions

Lack of Kronecker delta property in EFG shape

functions UI poses some difficulty in the imposition of

essential boundary conditions. For that different

numerical techniques have been proposed to enforce the

essential boundary conditions in EFG method such as

Lagrange multiplier technique [31,32], modified varia-

tional principle approach [7], penalty approach [37],

coupling with FEM [38], singular weight function ap-

proach [39] and transformation technique [40] etc. In the

present work, Lagrange multiplier technique is used to
e location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2) for dmax ¼ 1:01

FEM

Hyperbolic Exponential Rational Cosine

0.0000 0.0000 0.0000 0.0000 0.0000

26.5095 25.5403 25.7261 25.7058 37.9128

53.8647 52.6560 52.9196 52.8300 55.2100

64.4474 63.1709 63.4602 63.3439 63.6469

68.5795 67.2777 67.5766 67.4502 67.8024

70.1954 68.8834 69.1861 69.0559 69.8543

70.8274 69.5113 69.8155 69.6838 70.8682

71.0747 69.7569 70.0617 69.9295 71.3693

71.1714 69.8530 70.1580 70.0255 71.6170

71.2093 69.8905 70.1956 70.0631 71.7395

71.2241 69.9052 70.2103 70.0778 71.8000

e location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2) for dmax ¼ 1:51

FEM

Hyperbolic Exponential Rational Cosine

0.0000 0.0000 0.0000 0.0000 0.0000

23.5621 25.7571 26.0760 36.2574 37.9128

51.5526 52.8619 53.1690 56.1387 55.2100

62.5171 63.3696 63.6672 63.8565 63.6469

66.8053 67.4734 67.7663 66.8793 67.8024

68.4823 69.0779 69.3687 68.0641 69.8543

69.1381 69.7054 69.9952 68.5284 70.8682

69.3946 69.9508 70.2402 68.7105 71.3693

69.4948 70.0468 70.3360 68.7818 71.6170

69.5340 70.0844 70.3734 68.8098 71.7395

69.5494 70.0990 70.3881 68.8208 71.8000
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enforce the essential boundary conditions due to its

simplicity and accuracy.

In 3-D, Lagrange multiplier k is expressed as

kðxÞ ¼ NIðaÞkI ; x 2 S; ð14aÞ

dkðxÞ ¼ NIðaÞdkI ; x 2 S; ð14bÞ

where NIðaÞ is a Lagrange interpolant and a is the area

for the essential boundary conditions.
3. Implementation of the EFG method

A general form of energy equation for three-dimen-

sional heat transfer in isotropic materials with thermal

properties independent of temperature is given as

k
o2T
ox2

�
þ o2T

oy2
þ o2T

oz2

�
þ _Q ¼ qc _T : ð15aÞ
Table 9

Comparison of temperature value obtained using 144 nodes with FE

Time

(s)· 102
Temperature (�C)

dmax ¼ 1:01

R&R CS QS Gaussian Quadratic

0 0.0000 0.0000 0.0000 0.0000 0.0000

3 27.7469 27.7777 27.7756 27.7462 27.7800

6 50.9534 51.1260 51.1522 50.9515 51.2070

9 61.3727 61.5773 61.6096 61.3708 61.6785

12 65.9488 66.1682 66.2034 65.9469 66.2786

15 67.9572 68.1840 68.2206 67.9553 68.2988

18 68.8387 69.0692 69.1065 68.8368 69.1861

21 69.2257 69.4579 69.4956 69.2237 69.5758

24 69.3955 69.6286 69.6664 69.3935 69.7470

27 69.4700 69.7035 69.7415 69.4680 69.8222

30 69.5027 69.7365 69.7744 69.5008 69.8552

Table 10

Comparison of temperature value obtained using 144 nodes with FE

Time

(s)· 102
Temperature (�C)

dmax ¼ 1:51

R&R CS QS Gaussian Quadratic

0 0.0000 0.0000 0.0000 0.0000 0.0000

3 28.9342 28.5827 28.7961 28.6839 36.4238

6 50.8937 51.1169 51.0966 51.0776 59.7803

9 61.1118 61.4391 61.3686 61.3700 69.6179

12 65.7326 66.0621 65.9906 65.9884 73.9208

15 67.8190 68.1311 68.0687 68.0588 75.8071

18 68.7610 69.0571 69.0030 68.9871 76.6342

21 69.1863 69.4715 69.4231 69.4032 76.9969

24 69.3784 69.6570 69.6120 69.5898 77.1559

27 69.4651 69.7400 69.6970 69.6734 77.2257

30 69.5042 69.7772 69.7352 69.7109 77.2563
The initial conditions are given as at time t ¼ 0

T ¼ Tini on V : ð15bÞ

The essential boundary conditions are given as

at the front surface of material 1 (S1F), y ¼ W ,

T ¼ T1F; ð15cÞ

at the front surface of material 2 (S2F), y ¼ W ,
T ¼ T2F: ð15dÞ

The natural boundary conditions are given as

at the back surface of material 1 and 2 (S1BS and

S2BS),

�k
oT
oy

ny ¼ hðT � T1Þ; ð15eÞ
M at the location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2) for dmax ¼ 1:01

FEM

Hyperbolic Exponential Rational Cosine

0.0000 0.0000 0.0000 0.0000 0.0000

27.7289 27.7804 27.7987 27.7775 31.0311

51.5229 51.1714 51.2790 51.2011 52.1403

62.1247 61.6339 61.7744 61.6712 61.9275

66.7820 66.2298 66.3846 66.2705 66.5053

68.8280 68.2481 68.4091 68.2905 68.6377

69.7269 69.1344 69.2982 69.1777 69.6303

70.1219 69.5237 69.6887 69.5673 70.0923

70.2954 69.6947 69.8602 69.7385 70.3073

70.3717 69.7697 69.9355 69.8136 70.4074

70.4052 69.8027 69.9686 69.8467 70.4539

M at the location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2) for dmax ¼ 1:51

FEM

Hyperbolic Exponential Rational Cosine

0.0000 0.0000 0.0000 0.0000 0.0000

8.6876 27.6985 27.2910 34.0727 31.0311

42.9939 51.2045 51.1816 53.7799 52.1403

57.4475 61.6850 61.7254 62.4151 61.9275

63.6642 66.2814 66.3225 66.2236 66.5053

66.3394 68.2970 68.3274 67.9048 68.6377

67.4907 69.1809 69.2019 68.6470 69.6303

67.9862 69.5686 69.5833 68.9747 70.0923

68.1995 69.7386 69.7497 69.1194 70.3073

68.2912 69.8131 69.8223 69.1833 70.4074

68.3307 69.8458 69.8540 69.2115 70.4539
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at the inner and outer surfaces of materials 1 and 2,

�k
oT
on0

nn0 ¼ hðT � T1Þ: ð15fÞ

The compatibility requirements at the interface of two

materials are given as

� k
oT
on0

� �����
mat1

¼ � k
oT
on0

� �����
mat2

; ð15gÞ

where nn0 is the cosine of angle between n and n0, n is the

outward normal to the surface and n0 ¼ x; z.
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Fig. 4. Comparison of EFG results obtained using 96 nodes
The weighted integral form of Eq. (15a) is obtained

asZ
V
w k

o2T
ox2

��
þ o2T

oy2
þ o2T

oz2

�
þ _Q� qc _T

	
dV ¼ 0: ð16Þ

The weak form of Eq. (16) will beZ
V
½kðrTwÞrT � w _Qþ wqc _T �dV

�
Z
S
wk

oT
ox

nx

�
þ oT

oy
ny þ

oT
oz

nz

�
dS ¼ 0: ð17Þ
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with FEM at the location (x ¼ 0:6, y ¼ 0 and z ¼ 0:2).
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Introducing natural boundary conditions in weak form,

Eq. (17) reduces toX2

i¼1

Z
Vi

½kiðrTwÞrT � w _Qi þ wqici _T �dV

þ
X10
j¼1

Z
Sj

whðT � T1ÞdS ¼ 0; ð18Þ

where

rT ¼ o

ox
o

oy
o

oz

� 	
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Fig. 5. Comparison of EFG results obtained using 144 nodes
and

S1 ¼ S1L; S2 ¼ S2L; S3 ¼ S1R; S4 ¼ S2R;

S5 ¼ S1B; S6 ¼ S2B; S7 ¼ S1T ; S8 ¼ S2T ;

S9 ¼ S1BS; S10 ¼ S2BS:

The functional IðT Þ can be written as

IðT Þ ¼
X2

i¼1

Z
Vi

1

2
kiðrTT ÞrT

�
� T _Qi þ qiciT _T

	
dV

þ
X10
j¼1

Z
Sj

hT 2

2
dS �

X10
j¼1

Z
Sj

hTT1 dS: ð19Þ
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with FEM at the location (x ¼ 0:6, y ¼ 0 and z ¼ 0:2).
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Using Eqs. (15c) and (15d) to enforce essential boundary

conditions, the functional I�ðT Þ is obtained as

I�ðT Þ ¼
X2

i¼1

Z
Vi

1

2
kiðrTT ÞrT

�
� T _Qi þ qiciT _T

	
dV

þ
X10
j¼1

Z
Sj

hT 2

2
dS �

X10
j¼1

Z
Sj

hTT1 dS

þ
X2

i¼1

Z
SiF

kðT � TSiFÞdS: ð20Þ
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Fig. 6. Comparison of EFG results obtained using 96 nodes
Using variational method, Eq. (20) reduces to

dI�ðT Þ ¼
X2

i¼1

Z
Vi

½kiðrTT ÞdrT � _QidT þ qici _TdT �dV

þ
X10
j¼1

Z
Sj

hTdT dS �
X10
j¼1

Z
Sj

hT1dT dS

þ
X2

i¼1

Z
SiF

½kdT þ dkðT � TSiFÞ�dS: ð21Þ

Since dT and dk are arbitrary in preceding Eq. (21), the

following equations are obtained using Eqs. (8) and (21):
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with FEM at the location (x ¼ 0:6, y ¼ 0 and z ¼ 0:3).
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½K�fTg þ ½C�f _Tg þ ½G�fkg ¼ ffg; ð22aÞ

½GT�fTg ¼ fqg; ð22bÞ

KIJ ¼
X2

i¼1

Z
Vi

UI ;x

UI ;y

UI;z

2
4

3
5

T ki 0 0

0 ki 0
0 0 ki

2
4

3
5 UI ;x

UI ;y

UI;z

2
4

3
5dV

þ
X10
j¼1

Z
Sj

hUT
I UJ dS; ð23aÞ

CIJ ¼
X2

i¼1

Z
Vi

qiciU
T
I UJ dV ; ð23bÞ

fI ¼
X2

i¼1

Z
Vi

_QiUI dV þ
X10
j¼1

Z
Sj

hT1UI dS; ð23cÞ

GIK ¼
Z
S1F

UINK dS þ
Z
S2F

UINK dS; ð23dÞ

qK ¼
Z
S1F

TS1FNK dS þ
Z
S2F

TS2FNK dS: ð23eÞ

Using backward difference technique for time approxi-

mation, Eq. (22) can be written as

ð24Þ

where

R�n ¼ ð½C� � ð1� aÞDt½K�ÞfTg�n�1 þ aDtffg�n
þ ð1� aÞDtffg�n�1; ð24aÞ

K� ¼ aDt½K�: ð24bÞ

4. Numerical results and discussion

The different parameters used for three-dimensional

steady-state and transient analysis of the composite heat

transfer model shown in Fig. 1 are tabulated in Table 1.

The EFG results are obtained using different weight

functions for two sets of nodes. The FEM results are

obtained using ANSYS package and 8-noded brick

element (SOLID 70) for the same sets of nodes. A

comparative study is carried out to evaluate the per-

formance of different EFG weight functions.

4.1. Steady-state analysis

The steady-state EFG results have been obtained

using different weight functions for a composite three-

dimensional model problem. L2-error norms of temper-

ature values have been calculated for different EFG

weight functions using two sets of nodes. Table 2 shows

the L2-error norms obtained using two values of scaling

parameter (i.e. dmax ¼ 1:01 and 1.51) for 96 and 144
nodes. From the results presented in Table 2, it has been

observed that the results obtained using different EFG

weight function are almost identical for dmax ¼ 1:01 but

for dmax ¼ 1:51, only R&R, CS, QS, Gaussian, expo-

nential and rational weight functions give acceptable

results. It has also been noticed that the EFG results

start converging with the increase in number of nodes.

The effect of scaling parameter (dmax) on EFG results

obtained using different weight functions is presented in

Table 3 for 96 nodes at the location (x ¼ 0:2, y ¼ 0 and

z ¼ 0:2) and in Table 4 for 144 nodes at the same loca-

tion (x ¼ 0:2, y ¼ 0 and z ¼ 0:2). The similar effect of

scaling parameter on EFG results has also been shown

in Table 5 for 96 nodes at the location (x ¼ 0:5, y ¼ 0

and z ¼ 0:1) and in Table 6 for 144 nodes the same

location (x ¼ 0:5, y ¼ 0 and z ¼ 0:1). Fig. 2 shows the

effect of scaling parameter on EFG results obtained

using 96 and 144 nodes at the location (x ¼ 0:4, y ¼ 0

and z ¼ 0:3). The similar effect of scaling parameter on

EFG results is observed in Fig. 3 at the location (x ¼ 0:6,
y ¼ 0 and z ¼ 0:3). From tables and figures, it is clear

that only R&R, CS, QS, Gaussian, exponential and ra-

tional weight functions gives acceptable results in the

range 1:0 < dmax < 1:5 whereas the results obtained

using quadratic, hyperbolic and cosine weight functions

are varying in abrupt manner with scaling parameter

(dmax). Therefore EFG results obtained using quadratic,

hyperbolic and cosine weight functions are not reliable

in the range 1:0 < dmax < 1:5. It is also observed that

there is minimum variation in the EFG results with the

increase in the value of scaling parameter (dmax) for

exponential weight function.

4.2. Transient analysis

The transient analysis of three-dimensional compos-

ite model is also carried out using different EFG weight

functions. The EFG results have been obtained at few

typical locations for two sets of nodes using two values

of scaling parameter. Table 7 shows a comparison of

temperature values obtained using 96 nodes with FEM

results at the location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2) for

dmax ¼ 1:01. A comparison of temperature values ob-

tained using 96 nodes with FEM results is also presented

in Table 8 at the same location (x ¼ 0:4, y ¼ 0 and

z ¼ 0:2) for dmax ¼ 1:51. Tables 9 and 10 show the sim-

ilar comparisons of temperature values obtained using

144 nodes for dmax ¼ 1:01 and 1.51, respectively at the

location (x ¼ 0:4, y ¼ 0 and z ¼ 0:2). Fig. 4 shows the

comparison of temperature values obtained using 96

nodes with FEM results for dmax ¼ 1:01 and 1.51 at the

location (x ¼ 0:6, y ¼ 0 and z ¼ 0:2). The similar com-

parison of temperature values obtained using 144 nodes

with FEM results is shown in Fig. 5 at the same location

(x ¼ 0:6, y ¼ 0 and z ¼ 0:2Þ. Fig. 6 shows the compari-

son of temperature values obtained using 96 nodes with
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FEM results for dmax ¼ 1:01 and 1.51 at another loca-

tion (x ¼ 0:6, y ¼ 0 and z ¼ 0:3). The similar compari-

son of temperature values obtained using 144 nodes with

FEM results is shown in Fig. 7 at the same location

(x ¼ 0:6, y ¼ 0 and z ¼ 0:3). From the results presented

in tables and figures, it is clear that the EFG results

obtained using different weight functions are almost

identical for dmax ¼ 1:01 but for dmax ¼ 1:51 only R&R,

CS, QS, Gaussian, exponential and rational weight

functions give acceptable results. It has also been ob-

served that the results obtained by EFG method are in

good agreement with those obtained by FEM and
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Fig. 7. Comparison of EFG results obtained using 144 nodes
moreover with the increase in number of nodes EFG

results starts converging.
5. Conclusions

In the present analysis, the EFG method has been

successfully used to obtain the numerical solution of

three-dimensional composite heat transfer problems.

The MATLAB codes have been developed to obtain the

numerical solution for a model problem. The results

obtained using different EFG weight functions are
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compared with those obtained by FEM to evaluate the

performance of the weight functions. It has been found

that the EFG results obtained using proposed (expo-

nential, rational and cosine) and existing (R&R, CS, QS,

Gaussian, quadratic and hyperbolic) weight functions

are in good agreement with those obtained by FEM.

From this analysis, it is clear that only R&R, CS, QS,

Gaussian, exponential and rational weight functions

give acceptable results in the range 1:0 < dmax < 1:5. The
results obtained using exponential weight function are

more reliable as compared to other used weight func-

tions because only exponential weight function has

minimum variation in the results with the change in the

value of scaling parameter. This work can be extended

further for complex three-dimensional problems.
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